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The idea of a weighted Sobolev gradient, introduced and applied to singular differential
equations in [1], is extended to a Poisson–Boltzmann system with discontinuous coeffi-
cients. The technique is demonstrated on fully nonlinear and linear forms of the
Poisson– Boltzmann equation in one, two, and three dimensions in a finite difference
setting. A comparison between the weighted gradient and FAS multigrid is given for large
jump size in the coefficient function.
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1. Introduction

In this article, a weighted Sobolev gradient is used as a preconditioner to solve the linear and nonlinear Poisson–Boltz-
mann equation (PBE) with discontinuous coefficient functions. The idea of a weighted gradient, was introduced by Mahavier
in [1] who demonstrated its effectiveness in dealing with linear and nonlinear singular differential equations. Sobolev
gradients were considered as preconditioners for solution of first order and second order differential equations in [2] in
which a one dimensional PBE that arises in semiconductor modeling is considered. An example is also given in [2] of a
problem for which the Sobolev gradient method converges but Newton’s method does not. In this article, we combine the
idea of preconditioning with a weighted Sobolev gradient and present its application to linear and nonlinear PBE. We
investigate how well the weighted Sobolev gradient works for large discontinuities in linear and nonlinear PBE and compare
to unweighted Sobolev gradient and FAS multigrid.

In [3] Neuberger has introduced and developed the Sobolev gradient technique for solutions of differential equations. This
method has proven its usefulness for problems from many fields such as minimization related to Ginzburg–Landau free
energy functionals [4,5], the nonlinear Schrodinger equation [6], superconductors [7,8], applications to Differential Algebraic
Equations [9], image processing problems [10] and optimal control problems [11]. The underlying idea is to formulate prob-
lems in terms of minimizing a functional whose critical points are the desired solutions. The functional that is to be mini-
mized could be a least square functional or energy functional related to the system. Steepest descent is used for the
minimization process.

In Section 2, we discuss the PBE in some detail. In Section 3, we build on [1] and give explanations and justifications for a
weighted gradient and its possible application to differential equations with discontinuous coefficients. In Section 4, we
present problems in the finite difference setting. In Section 5, we give results for numerical test problems for both linear
and nonlinear PBE in finite difference settings. In Section 6, we compare the weighted Sobolev gradient with a nonlinear
. All rights reserved.
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multigrid method. In Section 7, details of the software used are given. Finally, in Section 8 we conclude our results and offer
possible future improvements.

2. Poisson–Boltzmann equation

This section is an introduction to the PBE and its application in estimating the electric potential around biomolecules. The
PBE is an elliptic partial differential equation that models many important phenomena such as charge distributions in semi-
conductor devices [2] and the protein-folding problem. The PBE is being extensively studied to analyze the properties of the
biomolecules in physics and chemistry. Here we present an overview and background of the equation sufficient for this
article, interested readers are referred to [12,13] for more analysis and the derivation of the equation. For material covered
in this section, we heavily relied upon [12].

When a macromolecule such as a protein is immersed in an ionic solution, a thick layer is formed due to the penetration
of solvent ions that prevents contact of the molecule with the ionic solvent. This molecule can be identified with a charged
cluster of atoms. The extended Deybe–Hückle theory [12] is used to model this phenomenon. Fig. 1 shows a sketch of the
Deybe–Hückle model.

The electrostatic potential anywhere in the region X, where X is a cubical region as shown in Fig. 1, is given by the PBE
�r � ðaðxÞruÞ þ �j2ðxÞ sinhðuðxÞÞ ¼ 4pe2
c

jBT

XNm

i¼1

zidðx� xiÞ x 2 X � R3 and uðxÞ ¼ gðxÞ; x 2 C ð1Þ
Our notation follows Holst’s work in his thesis [12]. Here C denotes the boundary of the domain X and g(x) is some boundary
function. ec denotes the charge of electron, T represents the temperature, kB the Boltzmann constant. If qi ¼ ziec represents
the charge at the location xi in the molecular region, zi is the fraction of charge at the location xi. The dielectric e and the
modified Debye–Hückle parameter ~j are piecewise constant functions. If X1,X2 and X3 denote molecular region, exclusion
layer and solvent respectively, the other two coefficients e; ~j and the force term f can be defined below.

i. a : X # LðR3;R3Þ; aijðxÞ ¼ dijeðxÞ
eðxÞ ¼
e1 x 2 X1

e2 ¼ e3 x 2 X2 [X3

�
ð2Þ
ii. ~j : X # R,
�jðxÞ ¼
0 x 2 X1 [X2ffiffiffiffiffi

e3
p

j x 2 X3

�
ð3Þ

where j is the Debye–Hückle parameter that depends on the ionic strength Is of the solvent and is given by the for-

mula ð 8pNAe2
c

1000e3kBT Þ
1=2I1=2

s , where NA is Avogadro’s number.
iii. f : X! R,
f ðxÞ ¼ 4pe2
c

jBT

XNm

i¼1

zidðx� xiÞ ð4Þ
where x1; x2; . . . ; xNm 2 X1 denote the charge locations and z1; z2; . . . ; zNm are associated fractional charges respectively.
Fig. 1. A sketch of Debye–Hückle model in 3d.
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For the linearized PBE we just have to replace sinhðuðxÞÞ ¼ uðxÞ þ uðxÞ3
3!
þ � � � by its first approximation u(x).

Since the problem (1) is defined over three separate regions, each region representing a different material, the coefficient
functions e and ~j are discontinuous at the interfaces, giving us an interface problem.

Consider two ways to find the unknown electrostatic potential u in the region X. We can solve Eq. (1) directly, or min-
imize its corresponding energy functional
FðuÞ ¼
Z

1
2
ðruÞtaðxÞðruÞ þ ~j2ðxÞ coshðuÞ � fu ð5Þ
and in the linear case
FðuÞ ¼
Z

1
2
ðruÞtaðxÞðruÞ þ 1

2
~j2ðxÞu2 � fu ð6Þ
Here t denotes the transpose. In fact, Eq. (1) is the Euler–Lagrange equation corresponding to functional (5). This functional is
a convex functional that guarantees global minima u for rF(u) = 0 in X, a solution to the problem (1). It is more efficient to
find u by minimizing the energy functionals given by (5) and (6), respectively than minimizing a least square functional
related to the problem (1) that involves second order derivative operators. We would like to design a Sobolev gradient method
and demonstrate its application to the linear and nonlinear PBE with different jump discontinuities in its coefficient e. We
attempt to find the electrostatic potential u by minimizing functionals (5) and (6) in a finite difference setting. Numerical
results and a detailed comparison of different gradients with regards to their efficiency are given in the subsequent sections.

3. General idea of Sobolev gradient

This section covers basic background about Sobolev gradients, weighted Sobolev gradients and steepest descent for en-
ergy functional minimization. We develop numerical schemes based on steepest descent for linear and nonlinear problems.
Interested readers are referred to [3] for a more detailed discussion of Sobolev gradients. The choice of an inner product
space is very important and plays a very significant role in obtaining adequate efficiency and accuracy. We construct a Sobo-
lev inner product depending upon the operators of the underlying differential equation. Actually, in our case we are consid-
ering the operators in the functional. The question of the best inner product to use for a given problem is still an open and
fundamental question. Having been inspired by Mahavier’s idea of a weighted gradient [1], we define a weighted inner prod-
uct suitable for the minimization of energy functionals (5) and (6).

A Sobolev space H1,2(X) is defined as a space of those square Lebesgue integrable functions in L2 whose first order weak
derivatives also belong to L2(X). H1,2 (X) is defined by the inner product
hu; viH1;2 ¼ hu;viL2
þ hDðuÞ;DðvÞiL2

ð7Þ
where D is the derivative operator.
Mahavier’s idea of weighted gradients motivates us to define a new inner product on H1,2 by taking care of the discon-

tinuous function e given by (2) that is affecting the derivative terms in (5) and (6).
We define a new inner product on H1,2
hu; viH1;2
w
¼ hu;viL2

þ hwDðuÞ;wDðvÞiL2
ð8Þ
Mahavier in his work [1] shows that if the differentiable weight function w is zero somewhere in the domain of interest then
(8) defines an inner product on H1,2 and H1,2 is a Sobolev space under this inner product. In our case, the weight function
w = e is a function that is discontinuous at two different points that represent the material discontinuities. Since e is a piece-
wise constant function that is discontinuous at finitely many points, it is a function that is differentiable almost everywhere.
One can extend the same idea [1] for weight functions such as e so that H1,2 forms a Sobolev space, say, H1;2

w where w = e,
under the inner product defined by (8).

The aim is to find the gradient rF(u) of a convex functional F(u) associated with the problem and to find the zero of the
gradient, by using steepest descent minimization process, that is the minima of F(u) and a solution to the original problem.

The gradient rL2 FðuÞ of the functional F(u): L2 (X) ? Rn where n = 1,2,3, . . ., defined by (5) and (6) is given by the Taylor
series
Fðuþ hÞ ¼ FðuÞ þ hrL2 FðuÞ;hiL2
þ Oðh2Þ
where h is a test function.
If D denotes the weak derivative of a function u in L2(X), the Sobolev gradientrH1;2 FðuÞ in H1, 2 and the weighted Sobolev

gradient rH1;2
w

FðuÞ in H1;2
w can be found using Eqs. (7) and (8).
ðI þ D�DÞrH1;2 FðuÞ ¼ rL2 FðuÞ ð9Þ
and
ðI þ D�w2DÞrH1;2
w

FðuÞ ¼ rL2 FðuÞ ð10Þ
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where D* represents the Hilbert adjoint of derivative operator D. We can solve Eqs. (9) and (10) for rH1;2 FðuÞ and rH1;2
w

FðuÞ
using some appropriate iterative scheme respectively.

4. Numerical setting

For numerical experimentation, we used a finite difference operator to discretize the derivative operators. If the domain X
in one dimension is divided into 1,2, . . .,n grid points with dx the internodal spacing then D0:Rn ? Rn�1 and D1:Rn ? Rn�1,
denote the averaging operator and first order derivative operator, respectively.
ðD0uÞi ¼
uiþ1 þ ui

2
and ðD1uÞi ¼

uiþ1 � ui

dx
where i ¼ 1; . . . ;n� 1
Similarly, one can define averaging operator and finite difference versions of partial derivatives in higher dimensions. We
discretize the domain such that each point of discontinuity in the region X is one of the grid points, and in fact the set of
the points of discontinuities is a subset of the set of grid points. After discretization, the L2 gradient of the functional
described by (5) and (6) are given by, respectively
rL2 FðuÞ ¼ �j2ðxÞ sinhðuÞ � f þ
Xd

i¼1

D�i D0ðeðxÞÞ � DiðuÞð Þ for d ¼ 1;2;3 ð11Þ

rL2 FðuÞ ¼ �j2ðxÞu� f þ
Xd

i¼1

D�i D0ðeðxÞÞ � DiðuÞð Þ for d ¼ 1;2;3 ð12Þ
where Di and D�i for i = 1,2,3, denote the finite difference version of first order partial derivatives and their Hilbert adjoints
respectively.

A gradient of a functional gives the direction of the greatest increase per unit change in the argument of the func-
tional. Therefore the most rapid decrease in the functional is in the direction opposite to the gradient. We use the
steepest descent method for the minimization process. Steepest descent is the simplest of the gradient methods that
moves in the direction opposite to the gradient in order to search for the minima of a functional. One of the advan-
tages of steepest descent is that it converges even for a poor initial approximation. One can use a constant step size
in the steepest descent minimization process or a line search technique can also be employed to find the optimum
value of step size at each minimization step. The minimization process is terminated when the infinity norm of the
gradient vector reaches the desired magnitude. Since the matrices P = (I + D*D) and Pw = (I + D*w2D) are sparse and po-
sitive definite, any iterative method such as conjugate gradient, Gauss–Seidel or multigrid could be used to solve (9)
and (10).

Suppose r denotes the gradient in L2,H1,2 and H1;2
w spaces. We find the step size k at each step that minimizes

F(u � krF(u)). In the linear case step size k in the steepest descent is given by
k ¼ hrFðuÞ;rFðuÞi
hrFðrFðuÞÞ;rFðuÞi ð13Þ
where the inner product is taken in the corresponding Hilbert space. For the nonlinear problem a univariant line search is
used to find the value of step size at each step. Now we can define a general algorithm to solve our problem in all three
spaces. If p denotes the projection operator that sets the boundary points of vectors equal to zero, to incorporate the Dirichlet
boundary conditions, the steepest descent algorithm looks like

Algorithm 1

1. choose an appropriate initial guess u
2. calculate prF(u)
3. find k that minimizes F(u � krF(u))
4. do u ? u � kprF(u)
5. go to step 2 until the infinity norm of rL2 FðuÞ < tolerance

Since in one dimension the matrices P and Pw are tridiagonal band matrices one can use LU decomposition for the exact
solution of (9) and (10). When using inexact line search to find the step size and an iterative solver to solve (9) and (10),
proper care should be taken to decide the stopping criterion as it significantly affects the over all convergence of steepest
descent.

5. Application to Poisson–Boltzmann equation

We consider some experiments on a test problem similar to those investigated by Holst in [12], using multilevel method
in different settings. For the test problem, we specify the coefficients in Eq. (1). This is a hypothetical problem and might not
be related to any particular molecule, we just want to evaluate our algorithm in one, two and three dimensions with a
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version of the PBE with jump discontinuities in its coefficient functions. We map the molecule into a line segment, a square
or a cube, depending upon the dimension we are working in. We take the molecule well within the domain so that it incor-
porates 30% of the whole domain. Let us assume that for some temperature T and ionic strength Is of solvent we have the
following bounds on the coefficients:

� f : X! R;�1 6 f ðxÞ 6 1 8x 2 X ¼ X1 [X2 [X3 and X1 \X2 \X3 = u
� e : X! R; eðxÞ ¼ 2 for x 2X1 and e(x) = 80 for x 2 X2 [X3

� �j : X! R; �jðxÞ ¼ 0 for x 2X1 [X2 and �jðxÞ ¼ 1:732 for x 2X3

� g : C! R; gðxÞ ¼ 1:0 "x 2 C

Since we have taken �1 6 f(x) 6 1, for the sake of simplicity we take zi, fractional charge at each node xi, to be equally
distributed over [-1,1] in the molecular region. Figs. 3 and 5 show the graphs of f in 1d and 2d respectively. And Figs. 2
and 4 show the function e in 1d and 2d respectively. We define f and e in a similar way in 3d.

In the next section we will also demonstrate convergence results for different ratios D ¼ e1
e2

of the jump size. We will do the
same problem in one, two and three dimensions in both linear and nonlinear cases. This problem can be viewed as our pro-
totypical problem.
5.1. Application to linear PBE

In this section we use energy functional (5) that is in its linearized form in order to assess our algorithm. Before we move
ahead some analysis of the spectral radii is in order. The idea of unweighted and weighted gradient can be viewed as a pre-
conditioning strategy to solve the linear system (9) and (10). If we use a constant and optimal value of step size k then we can
give a spectral radii comparison of three different gradients. After discretization the L2 gradient (12) takes the form
rL2 FðuÞ ¼ Au� f . For all three gradients L2,H1,2 and H1;2

w the steepest descent iterative schemes are respectively as follows.
u! ðI � kAÞuþ kf ; u! ðI � kP�1AÞuþ kP�1f ; u! ðI � kP�1
w AÞuþ kP�1

w f
From these iteration schemes it is evident that two different Sobolev inner products, weighted and unweighted result in two
different preconditioners Pw and P respectively where T1 = (I � kA),T2 = (I � kP�1A) and T3 ¼ ðI � kP�1

w AÞ are the iteration
matrices in L2,H1,2 and H1;2

w respectively. A comparison of different spectral radii is given for different grid points M in Table
1. Here q denotes spectral radius of the iteration matrix. It may be recalled that a necessary and sufficient condition for an
iterative process to converge is that q < 1 and for small values of q the convergence is fast.

Table 1 shows the dominance of weighted gradient over the unweighted gradient and poor performance of the L2 gradient
is also clear. Since spectral radii of both weighted and unweighted Sobolev gradients are independent of the grid points it
shows that convergence rate is independent of the problem size. Here convergence rate means the amount of the error that
is reduced per iteration. The time required per iteration will be different for different grid sizes and depends on what type of
solver is used and what the stopping criterion is set when solving (9) and (10). One important point to note is that although
spectral radii in H1,2 and H1;2

w came out to be independent of problem size M, the number of iterations for a given M is depen-
dent on the stopping criterion set for the iterative solver to solve systems (9) and (10). The number of iterations m required
to reduce the error factor by 10�n can be found by the formula m P � n

log10 ½qðTÞ�
[14] where T is the iteration matrix of u ? T

u � c. In fact, one of the reasons of the efficiency of the weighted gradient is that it allows much larger step size in the steep-
est descent compared to unweighted gradient.
Fig. 2. Graph of e in 1d.



Fig. 4. Graph of e in 2d.

Fig. 5. Graph of force function f in 2d.

Fig. 3. Graph of force function f in 1d.
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Table 1
Spectral radii of the iteration matrices T1, T2 and T3 for different grid size M.

M q(T1) q(T2) q(T3)

51 0.9991 0.9602 0.9513
101 0.9998 0.9602 0.9513
201 0.9999 0.9602 0.9513
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Here we give results in 1d, 2d and 3d with different grid size. For all experiments in this section a steepest descent meth-
od was run and an initial guess u = 1.0 was taken. The minimization process was terminated when the infinity norm of gra-
dient was less than 10� 7.
1-Dimension
Let X = [0,1],X1 = [0.4,0.6],X3 = X � (0.2,0.8) and X2 = X �X1 [X3 represent the entire domain, molecular region, ionic

solution and ion exclusion layer respectively. In one dimension a(x) = e (x) where e is defined by (2). Table 2 shows the results
for different gradients with different number of grid points M.
2-Dimension
In two dimensions, let X = [0,1] � [0,1],X1 = [0.4,0.6] � [0.4,0.6],X3 = X � (0.2,0.8) � (0.2,0.8) and X2 = X �X1 [X3.

a(x) is a 2 � 2 scalar matrix with e(x) as diagonal entries. Since the L2 gradient gives very poor performance in higher dimen-
sions we only compare Sobolev gradient and weighted Sobolev gradient results in higher dimensions. Results were obtained
on the two dimensional grid with M �M grid points.
3-Dimension
In three dimensions, let X = [0,1] � [0,1] � [0,1],X1 = [0.4,0.6] � [0.4,0.6] � [0.4,0.6],X3 = X � (0.2,0.8) � (0.2,0.8) �

(0.2,0.8) and X2 = X �X1 [X3. Similarly, here we only compare Sobolev gradient and weighted Sobolev gradient results
on three dimensional grid with M �M �M grid points. Here a(x) is 3 � 3 scalar matrix with e(x) as the diagonal entries.

Tables 2–4 show that the unweighted gradient is better than L2 and weighted gradient outperforms the unweighted one
and the advantage of weighted gradient over unweighted is unaffected by the dimension we are working in.

Finally, in this section we are interested in how convergence is affected by the large jump size. That is, how these
weighted and unweighted gradients behave for different jump size D ¼ e1

e2
, when the value of dielectric e in the molecular

region is smaller than its value in the ionic solution. Again, spectral radius would be an appropriate measure to check the
efficiency of gradients. To this end, we ran the experiment of 1d linear PBE with M = 101 grid points and for each values
of D. An optimal value of the step size k was taken to minimize the corresponding spectral radius. Fig. 6 is a graph that com-
pares spectral radii in H1;2

w and H1,2 with different jump size in e(x). As expected, increase in spectral radii of weighted and
unweighted gradients for large jump size is seen. Nonetheless, both gradients continue to converge as spectral radii are
always less then 1. But, it can be seen from the graph that spectral radii of the weighted gradient remain less than the
spectral radii of the unweighted gradient. This shows that even for large jump size the weighted gradient retains its
superiority over the unweighted gradient. One point that is worth mentioning here is that all these observations are limited
to this specific problem and the two gradients might result in different ways for different problem.

The inner product (8) provided us with a preconditioner Pw = (I + D*w2D) whose efficiency is independent of problem size
and its advantage over P = (I + D*D) is independent of jump size. Here we don’t recommend this method for simple linear
problems because for such problems mostly used iterative methods such as linear multigrid would be more efficient.
However, we are concerned with its application to complex problems and the real benefit of this method lies in nonlinear
problems with discontinuous coefficients with large jump discontinuities.
5.2. Application to nonlinear PBE

We are mainly interested in the convergence behavior of the Sobolev gradient to a nonlinear PBE with jump discontin-
uous coefficient functions. Here we perform the same experiments that we did for the linear case, but this time we minimize
the nonlinear functional (5). Since sinhu ’ u for x 2 [0,1] and in this interval there is no significant difference between the
Table 2
Comparison between the L2, H1,2 and H1;2

w gradients by solving the linear PBE on different grid size M in 1d.

L2 H1,2
H1;2

w

M 51 101 201 301 501 701 301 501 701
No. of iterations 22,425 71,967 428,480 652 648 685 349 351 358
CPUs 0.2031 0.9687 15.625 0.1093 0.172 0.281 0.0321 0.0625 0.0937



Table 3
Comparison between the H1,2 and H1;2

w gradients by solving linear PBE on different grids size M �M in 2d.

H1,2
H1;2

w

M 21 31 51 21 31 51
No. of iterations 560 568 587 351 366 392
CPUs 3.391 7.172 33.421 2.140 4.703 25.484

Table 4
Comparison between the H1,2 and H1;2

w gradients by solving linear PBE on different grids size M �M �M in 3d.

H1,2
H1;2

w

M 11 21 31 11 21 31
No. of iterations 256 400 578 155 259 507
CPUs 6.578 85.656 627.828 5.219 62.469 497.71

Fig. 6. Comparison of spectral radii in H1;2
w and H1,2 with different jump size for 1d linear PBE where M = 101.
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linear and nonlinear cases, therefore we extend the interval of interest from [0,1] to [0,10] just to emphasize the
nonlinearity.

In the nonlinear case, after discretization the Eq. (11) becomes rL2 FðuÞ ¼ NðuÞ � f . And we use the same algorithm to
solve this nonlinear system. One of the major advantages of this method is that we don’t require any extra effort for the non-
linear problem, unlike Newton’s method where calculation of Hessian matrix is required for each step. Though rL2 FðuÞ is
nonlinear we only need to solve the linear system (9) and (10) to find the rH1;2 F and rH1;2

w
F respectively.

For all experiments, in this section a steepest descent method was run with an initial guess u = 1.0. Here the jump size is
D ¼ 2

80, same as in the linear case. The minimization process was terminated when the infinity norm of gradient was less than
10� 7. Coefficient matrix a(x) is the same as in the linear case. Here we give results in 1d, 2d and 3d.

1-Dimension
Let X = [0,10],X1 = [4,6],X3 = X � (2,8) and X2 = X �X1 [X3 represent the entire domain, molecular region, ionic solu-

tion and ion exclusion layer respectively.

2-Dimensions
In two dimensions, X = [0,10] � [0,10],X1 = [4,6] � [4,6],X3 = X � (2,8) � (2,8) and X2 = X �X1 [X3. We don’t give L2

gradient results as it gives poor performance in higher dimension. Results were obtained on the two dimensional grid with
M �M grid points.

3-Dimensions
In three dimensions, X = [0,10] � [0,10] � [0,10] where X1 = [4,6] � [4,6] � [4,6],X3 = X � (2,8) � (2,8) � (2,8) and X2

= X �X1 [X3. We only compare Sobolev gradient and weighted Sobolev gradient results on three dimensional grid with M
�M �M grid points.

From Tables 5–7 it is clear that L2 gradient is dominated by unweighted Sobolev gradient and the former one is outper-
formed by the weighted Sobolev gradient. And weighted Sobolev gradient maintains its performance in 1d, 2d and 3d. If we



Table 5
Comparison between the L2, H1,2 and H1;2

w gradients by solving nonlinear PBE on different grid size M in 1d.

L2 H1,2
H1;2

w

M 51 101 201 301 501 701 301 501 701
No. of iterations 45,929 456,756 455,739 657 676 689 356 366 372
CPUs 0.843 14.678 25.751 0.156 0.297 0.5937 0.062 0.109 0.250

Table 6
Comparison between the H1,2 and H1;2

w gradients by solving nonlinear PBE on different grid size M �M in 2d.

H1,2
H1;2

w

M 21 31 51 21 31 51
No. of iterations 603 619 659 343 359 357
CPUs 6.313 15.765 41.422 2.1093 4.234 23.46

Table 7
Comparison between the H1,2 and H1;2

w gradients by solving nonlinear PBE on different grid size M �M �M in 3d.

H1,2
H1;2

w

M 11 21 31 11 21 31
No. of iterations 872 954 969 224 244 334
CPUs 13.843 130.156 759.093 7.093 62.656 541.359
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compare the results of linear and nonlinear problems one can see that the advantage of weighted gradient over the un-
weighted is more pronounced in the nonlinear problem as compared to the linear problem. Fig. 7 shows an isosurface of
the electrostatic potential u.

After having done an experiment for small jumps in the nonlinear PBE, we would like to apply the same technique for
large size of discontinuities D ¼ e1

e2
where D = 10�1,10� 2,10�3 and 10�4, when the value of dielectric e in the molecular region

is smaller than its value in the ionic solution. The following graphs show the error vs CPU time in H1,2 and H1;2
w . All results

were obtained in 3d on 11 � 11 � 11 grid points and minimization process was terminated when the infinity norm of rL2 F
was less than 10�7. Table 8 summarizes the corresponding results. Figs. 8–11 are the related graphs that are drawn on
logscale.
Fig. 7. An isosurface of the electrostatic potential u, obtained by solving nonlinear PBE in 3d using weighted Sobolev gradient.

Table 8
CPU units obtained by solving nonlinear PBE in 3d on grid size 11 � 11 � 11 for different jump size D.

D = 10�1 D = 10�2 D = 10�3 D = 10�4

H1,2
H1;2

w
H1,2

H1;2
w

H1,2
H1;2

w
H1,2

H1;2
w

8.578 0.5118 15.734 1.938 54.641 7.237 330.516 71.969



Fig. 8. Error comparison for nonlinear PBE when D = 10�1.

Fig. 9. Error comparison for nonlinear PBE when D = 10�2.
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From Table 8 and the above graphs one can see that steepest descent in both H1,2 and H1;2
w continues to work for

large jump size and weighted gradient preserves its effectiveness over the unweighted one. One more point that
should be noted from Table 8 is that weighted gradient is more advantageous over the unweighted gradient for small
values of D. In the next section we give a comparison between our method and one commonly used for such types of
problems.
6. A comparison

This section presents a comparison between weighted gradient and a nonlinear multigrid full approximation scheme
(FAS) applied to a nonlinear elliptic PBE. We would like to test these two methods on a problem with exponential nonlin-
earity and large jump discontinuity in its coefficient function. Rapid nonlinearities and large oscillations in a partial differ-
ential equation can significantly affect the convergence of a numerical algorithm. For comparison between the two methods,
we consider the same test problem as discussed in [12].

The nonlinear problem has the form
�r � ðaðxÞruðxÞÞ þ bðx; uðxÞÞ ¼ f ðxÞ in X � R3; uðxÞ ¼ gðxÞ on C ð14Þ



Fig. 11. Error comparison for nonlinear PBE when D = 10�4.

Fig. 10. Error comparison for nonlinear PBE when D = 10�3.
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where the coefficients are given by

� a : X # LðR3;R3Þ; aijðxÞ ¼ dijeðxÞ; 1 6 eðxÞ 6 1:0� 108 8x 2 X
� b : X� R # R; bðx;uðxÞÞ ¼ leuðxÞ; 8x 2 X
� f : X # R; �1 6 f ðxÞ 6 1; 8x 2 X
� g : C # R; gðxÞ ¼ 0; 8x 2 C

where e(x) is piecewise constant, defined as
eðxÞ ¼ 1 6 e1 6 1:0� 108; if x 2 X1

1 6 e2 6 1:0� 108; if x 2 X nX1

(

Here f is the same function as defined in the previous sections and l = 1. We compare the two methods for a one dimensional
problem and we take X = [0,1] and X1 = [0.4,0.6]. We will consider large jump size in e(x) so that the ratio D ¼ e1

e2
can be as

large as 105.
The energy functional corresponding to (14) is
FðuÞ ¼
Z

1
2
ðruÞtaðxÞðruÞ þ leu � fu ð15Þ



Table 9
Comparison of CPU units between H1;2

w and FAS V-cycle for different jump size D.

D = 101 D = 102 D = 103 D = 105

H1;2
w

FAS V-cycle H1;2
w

FAS V-cycle H1;2
w

FAS V-cycle H1;2
w

FAS V-cycle

0.0156 0.0938 0.2188 0.4375 2.312 3.344 233.640 356.049
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We are looking for a function u that minimizes F(u) where
rL2 FðuÞ ¼ D�1 D0ðeðxÞÞ � D1ðuÞð Þ þ leu � f ð16Þ
After discretizingrL2 FðuÞ using finite difference operator, we haverL2 FðuÞ ¼ NðuÞ � f . We solve this nonlinear system using
weighted gradient and FAS.

For multigrid method we use a FAS V-cycle multigrid method. Gauss–Newton (nonlinear Gauss–Seidel) [15] method was
used for the relaxation sweeps on each grid. Linear interpolation operator, full weighting averaging operator and injection
operator were used as intergrid transfer operators. Number of relaxation sweeps on each grid were chosen to optimise
the efficiency of the algorithm. For weighted gradient, we used the same algorithm that we used in the previous section
for nonlinear problem.

One iteration of FAS constitutes one V-cycle with nonlinear relaxation sweeps on each grid all the way from finest grid to
coarsest grid and then from coarsest to finest. For M = 2l + 1 grid points one has to visit l grid level in one V-cycle. And to
achieve required accuracy many V-cycles may be required. On the other hand, one iteration of steepest descent means solv-
ing the linear system (10) and a steepest descent minimization step. Since each iteration of one method is entirely different
from the other we do not compare the number of iterations. Instead, we compare CPU units required to reach convergence.

Table 9 gives a comparison of CPU units between the two methods for different jump sizes in the coefficient function e(x).
The experiment was run on M = 129 grid points. The algorithm was terminated when the infinity norm of the gradient vector
was less than 10�7. The initial guess was u = 0.

From Table 9, one can see an advantage in using the weighted gradient instead of FAS V-cycle. This is more pronounced
for small jumps than for large ones. We don’t claim a superiority in all cases, FAS performs better than gradient methods for
simpler nonlinear problems. The weighted gradient discussed in this work offers an alternative method that proved to be
more efficient and robust for nonlinear problems that involve rapid nonlinearities and large discontinuities.
7. Software used

All experiments were performed on the note book PC HP 530 with Intel (R) Core (TM)2CPU T5200 @ 1.60 GHz, 0.99 GB of
RAM. We used fortran compiler g95 for all tests except for Section 6 where matlab 7.0 was used for comparison purpose. All
computations were performed in double precision. Gnuplot and Matlab both were used to generate all types of graphs.
8. Conclusion and future work

We have shown that one can improve descent direction in the steepest descent by defining various inner products. The
weighted Sobolev gradient we constructed has a clear advantage over the unweighted Sobolev gradient. Comparison shows
that for exponential nonlinearity and jump discontinuity, the algorithm can be used as an alternative to FAS V-cycle. Previ-
ously in [1], the application of weighted gradient was given for singular differential equations. In this article we have used
the idea of weighted gradient usefully for a nonlinear and linear problem with jump discontinuities in the coefficient func-
tions and the method remains stable for large jump size. Both weighted and unweighted Sobolev gradients exhibit consistent
performance in one, two and three dimensions. In [2] it was shown that for some problems Newton’s method fails to con-
verge near the singularity but Sobolev gradient method does converge. Sobolev gradients, unweighted or weighted, offer a
competitive method for more complicated and irregular differential equations. The possibility of improvement exists with
consideration of inner products different from (7) and (8) that will change the descent direction and may result in better
performance.

Given more RAM, one would like to extend the comparison of weighted gradient with FAS to 3d with considerably more
nodes. After comparing with FAS, the next candidate for comparison would be Newton’s multigrid [14] which is another var-
iation of the nonlinear multigrid method that usually requires a good initial guess and considered more efficient. The next
step would be to compare performance with softwares such as DELPHI.
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